Uric acid accumulation in an Arabidopsis urate oxidase mutant impairs seedling establishment by blocking peroxisome maintenance.
نویسندگان
چکیده
Purine nucleotides can be fully catabolized by plants to recycle nutrients. We have isolated a urate oxidase (uox) mutant of Arabidopsis thaliana that accumulates uric acid in all tissues, especially in the developing embryo. The mutant displays a reduced germination rate and is unable to establish autotrophic growth due to severe inhibition of cotyledon development and nutrient mobilization from the lipid reserves in the cotyledons. The uox mutant phenotype is suppressed in a xanthine dehydrogenase (xdh) uox double mutant, demonstrating that the underlying cause is not the defective purine base catabolism, or the lack of UOX per se, but the elevated uric acid concentration in the embryo. Remarkably, xanthine accumulates to similar levels in the xdh mutant without toxicity. This is paralleled in humans, where hyperuricemia is associated with many diseases whereas xanthinuria is asymptomatic. Searching for the molecular cause of uric acid toxicity, we discovered a local defect of peroxisomes (glyoxysomes) mostly confined to the cotyledons of the mature embryos, which resulted in the accumulation of free fatty acids in dry seeds. The peroxisomal defect explains the developmental phenotypes of the uox mutant, drawing a novel link between uric acid and peroxisome function, which may be relevant beyond plants.
منابع مشابه
Identification and Functional Characterization of Arabidopsis icl Mutant Under Trehalose Feeding in Light and Dark Conditions
Trehalose is a non-reducing sugar that plays an important role in plant growth and development. To study the role of trehalose on lipid metabolism and gluconeogenesis, Arabidopsis thaliana wild type (WT) and TreF (a line expressing trehalase) were grown on ½ MS medium with or without 100 mM sucrose and or trehalose in light or continuous darkness. In dark, trehalose leads skotomorphoge...
متن کاملAging-related decrease in liver peroxisomal fatty acid oxidation in control and clofibrate-treated mice. A biochemical study and mechanistic approach.
Membrane fatty acid composition affects membrane structure and function. Alterations in membrane composition have been reported in old animals and it is now hypothesized that these alterations may contribute to the onset of age-related diseases. Previously, we proposed that peroxisomes might also be involved in these aging-related membrane alterations. In order to extend our previous work, we h...
متن کاملUric acid degrading enzymes, urate oxidase and allantoinase, are associated with different subcellular organelles in frog liver and kidney.
On the basis of differential and density gradient centrifugation studies, the site of the uric acid degrading enzymes, urate oxidase and allantoinase, in amphibia was previously assigned to the hepatic peroxisomes. Using specific antibodies against frog urate oxidase and allantoinase, we have undertaken an immunocytochemical study of the localization of these two proteins in frog liver and kidn...
متن کاملWRI1 is required for seed germination and seedling establishment.
Storage compound accumulation during seed development prepares the next generation of plants for survival. Therefore, processes involved in the regulation and synthesis of storage compound accumulation during seed development bear relevance to germination and seedling establishment. The wrinkled1 (wri1) mutant of Arabidopsis (Arabidopsis thaliana) is impaired in seed oil accumulation. The WRI1 ...
متن کاملUric acid in plants and microorganisms: Biological applications and genetics - A review
Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 26 7 شماره
صفحات -
تاریخ انتشار 2014